Clinical Natural Language Processing and Audio

Tristan Naumann, Microsoft Research

CSC2541HS GUEST LECTURE

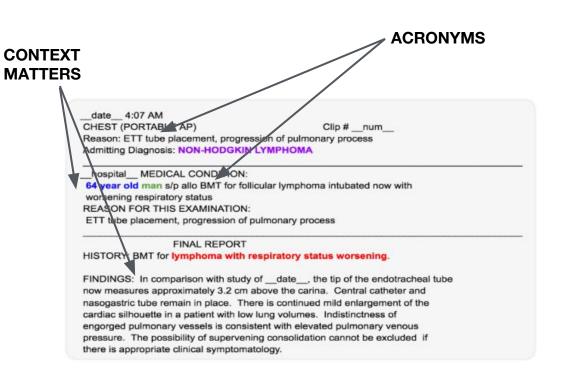
Using Clinical Text is Crucial

- Doctors use text to communicate patient state.
- Notes often contain the most important information

_date 4:07 AM					
CHEST (PORTABLE AP)	Clip #num				
Reason: ETT tube placement, prog	gression of pulmonary process				
Admitting Diagnosis: NON-HODGI	KIN LYMPHOMA				
_hospital MEDICAL CONDITIO	N:				
64 year old man s/p allo BMT for	follicular lymphoma intubated now with				
worsening respiratory status					
REASON FOR THIS EXAMINATION	DN:				
ETT tube placement, progression of pulmonary process					
FINAL REPOR	RT				
HISTORY: BMT for lymphoma wit	th respiratory status worsening.				
FINDINGS: In comparison with stu	udy ofdate, the tip of the endotracheal tube				
now measures approximately 3.2 d	cm above the carina. Central catheter and				
nasogastric tube remain in place.	There is continued mild enlargement of the				
cardiac silhouette in a patient with	low lung volumes. Indistinctness of				
engorged pulmonary vessels is co	nsistent with elevated pulmonary venous				
pressure. The possibility of superv	vening consolidation cannot be excluded if				
here is appropriate clinical symptomatology.					

ID	Description
6112	left vent drain
2734	right vent drain
1726	HIGH MIN VENT
1496	HIGH MIN. VENT.
1488	HIGH MIN. VENTIL.
1599	HIGH MINUTE VENT.

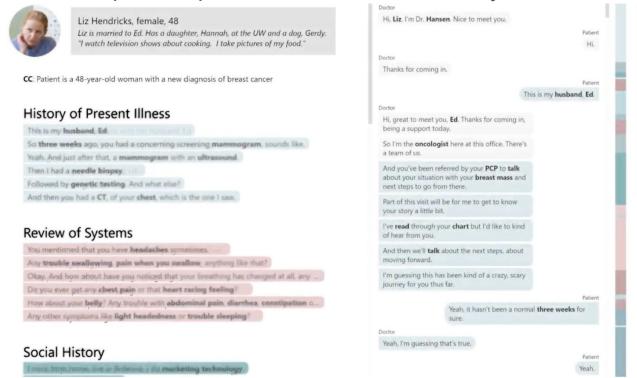
Clinical Text Presents Unique Challenges



ID	Description
6112	left vent drain
2734	right vent drain
1726	HIGH MIN VENT
1496	HIGH MIN. VENT.
1488	HIGH MIN. VENTIL.
1599	HIGH MINUTE VENT.

Clinical Audio Presents New Opportunities

Automatic transcription of patient conversations and synthesis of notes.



Clinical Audio Presents New Opportunities

- Voice is another modality for assessing patient state:
 - Disorders directly related to voice (e.g. vocal hyperfunction).^{1,2}

Learning to detect vocal hyperfunction from ambulatory neck-surface acceleration features:
Initial results for vocal fold nodules

Marzyeh Ghassemi, Jarrad H. Van Stan, Daryush D. Mehta, *Member*, *IEEE*,
Matías Zañartu, *Member*, *IEEE*, Harold A. Cheyne II, Robert E. Hillman, and John V. Guttag

Voice Disorder Identification by Using Machine Learning Techniques

LAURA VERDE¹, GIUSEPPE DE PIETRO², (Member, IEEE),
AND GIOVANNA SANNINO², (Member, IEEE)

1 Department of Engineering, Centro Direzionale di Napoli, Purthenope University of Naples, 80143 Naples, Italy

2 Institute of High Performance Computing and Networking, 80131 Naples, Italy

Corresponding author: Giovanna Sannino (giovanna sannino®icar.cnr.it)

Disorders that manifest through voice (e.g. dementia).^{3,4}

Journal of Alzheimer's Disease 49 (2016) 407–422 DOI 10.3233/JAD-150520 IOS Press

Learning multiview embeddings for assessing dementia

Linguistic Features Identify Alzheimer's Disease in Narrative Speech

Kathleen C. Fraser^a, Jed A. Meltzer^b and Frank Rudzicz^{a,c,*}

^aDepartment of Computer Science, University of Toronto, Toronto, Canada

^bRotman Research Institute, Toronto, Canada

CToronto Rehabilitation Institute-UHN, Toronto, Canada

Chloé Pou-Prom ^{1,2,3}, Frank Rudzicz^{1,2,3}

¹ Toronto Rehabilitation Institute - UHN, Toronto, Canada

²Vector Institute, Toronto, Canada

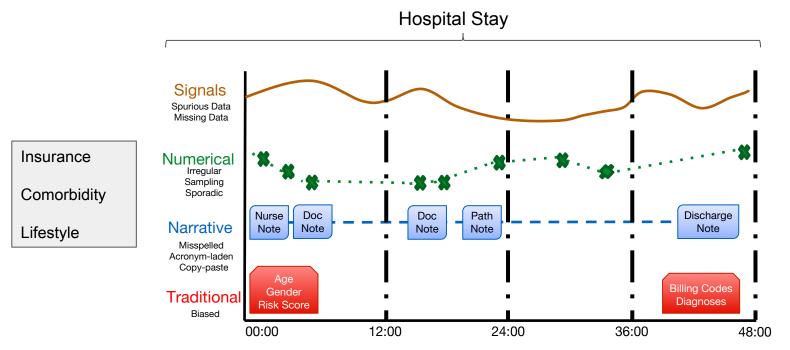
³ Department of Computer Science, University of Toronto, Canada

{ chloe, frank }@cs.toronto.edu

Handling Associate Editor: Peter Garrard

- [1] Ghassemi et al. Learning to detect vocal hyperfunction from ambulatory neck-surface acceleration features: Initial results for vocal fold nodules.
- [2] Verde et al. Voice Disorder Identification by Using Machine Learning Techniques
- [3] Fraser et al. Linguistic Features Identify Alzheimer's Disease in Narrative Speech.
- [4] Pou-Prom et al. Learning multiview embeddings for assessing dementia.

Language is Part of A Larger Ecosystem



Mortality?
Readmission?
Hospice?

Outline

- What is clinical language?
- Common natural language processing (NLP) tasks.
- Resources for working with clinical language.
- Selected applications.

Clinical Text != Biomedical Text

Biomedical text uses medical language in published literature. E.g.,

Clinical text is collected by care staff and describes patients. E.g.,

Discharge Summary

```
[**Last Name**],[**Known firstname**]
                                                                          [**Numeric Identifier**]
                                                               Unit No:
Admission Date: [** DATE **]
                                            Discharge Date: [** DATE **]
Date of Birth: [**_DATE_**]
                                          Sex: F
Service: CARDIOTHORACIC
Allergies:
Ampicillin
Attending:[**First Name**]
Addendum:
Pt did not go to rehab on Percocet, but on Ultram instead.
Discharge Medications:

    Aspirin 81 mg Tablet, Delayed Release (E.C.) Sig: One (1)

Tablet, Delayed Release (E.C.) PO DAILY (Daily).
Disp:*30 Tablet, Delayed Release (E.C.)(s)* Refills:*2*
Docusate Sodium 100 mg Capsule Sig: One (1) Capsule PO BID (2
times a dav).
Disp: *60 Capsule(s) * Refills: *2*
3. Amiodarone 200 mg Tablet Sig: Two (2) Tablet PO BID (2 times
a day): 400mg twice a day for 7 days then decrease to 400mg
daily for 7 days then decrease to 200mg daily until follow up
with cardiologist.
Disp:*60 Tablet(s)* Refills:*2*
4. Pantoprazole 40 mg Tablet, Delayed Release (E.C.) Sig: One
(1) Tablet, Delayed Release (E.C.) PO Q24H (every 24 hours).
Disp:*30 Tablet, Delayed Release (E.C.)(s)* Refills:*2*
```

Physician

```
TITLE:
  Chief Complaint:
  24 Hour Events:
EKG - At [** DATE **]
  [** DATE **]: Started Metoprolol 25 TID. Around 8pm Pt tacchy to 130s,
  dyspeneic. 02 requirement increased from 2 to 4L. EKG obtained showed
  afib. Given 50 of metoprolol. Ordered 15 IV Dilt but held it as HR came
  down to 80s. CXR shows increased pulmonary edema. Pt urinating well so
  held off on diuretics.
  ECHO: The left atrium is dilated. There is mild symmetric left
  ventricular hypertrophy. The left ventricular cavity is moderately
  dilated. Overall left ventricular systolic function is moderately
  depressed (LVEF= 30-40 %) secondary to akinesis of the basal septum and
  Infusions:
  Heparin Sodium - 450 units/hour
  Other ICU medications:
  Other medications:
  Changes to medical and family history:
  Review of systems is unchanged from admission except as noted below
  Vital signs
  Hemodynamic monitoring
  Fluid balance
                                                                 24 hours
                                                              Since 12 AM
  Tmax: 36.7
  (98
  Tcurrent: 36.6
  (97.9
  HR: 81 (63 - 114) bpm
```

Nursing

Sinus bradycardia. Long QTc interval. Low voltage in the limb leads. No previous tracing available for comparison.

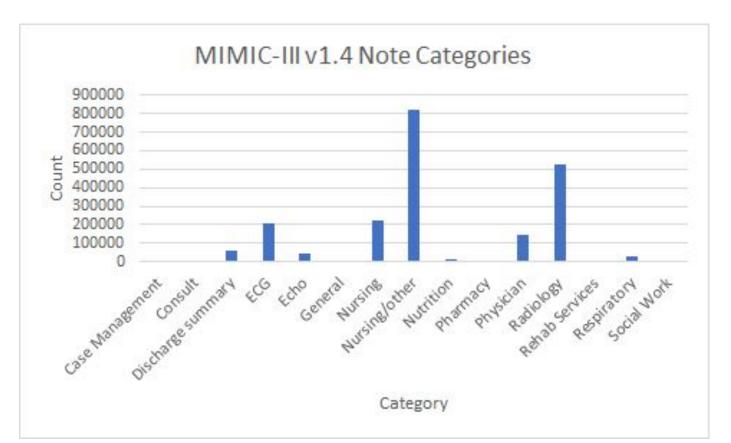
Normal sinus rhythm with atrio-ventricular conduction delay. Poor R wave progression in leads V1-V3 consistent with possible old anteroseptal myocardial infarction. Compared to the previous tracing of [**__DATE__**] the QRS voltage in the anterolateral leads is more prominent possibly related to lead placement.

Sinus rhythm Nonspecific intraventricular conduction delay Possible anterior infarct - age undetermined Lateral T wave changes are nonspecific Since previous tracing of [**__DATE__**], no significant change

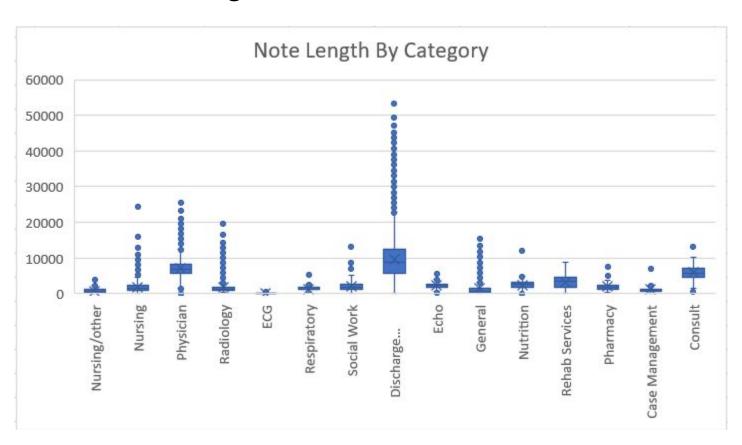
Radiology

```
DATE **]
CTA CHEST W&W/O C&RECONS, NON-CORONARY
                                                               Clip # [**Clip Number (Radiology)**]
Reason: Please rule out acute PF
Admitting Diagnosis: RESPIRATORY DISTRESS
 Contrast: OMNIPAQUE Amt: 100
[** HOSPITAL **] MEDICAL CONDITION:
 55 year old man with respiratory failure with history of PE, CPOD laryngeal
 edema
REASON FOR THIS EXAMINATION:
 Please rule out acute PF
No contraindications for TV contrast
WET READ: EHAb [**First Name**] [** DATE **]
 No pulmonary embolus detected (interval resolution since [** DATE **]). Moderate
 dependent atelectasis, right greater than left, in the setting of intubation.
 Thymic tissue noted, atypical for this age.
                                FINAL REPORT
HISTORY: History of pulmonary embolism, COPD, and laryngeal edema, now with
respiratory failure. Evaluate for pulmonary embolism.
```

MIMIC-III Note Categories



MIMIC-III Note Lengths



Clinical Text Presents Unique Challenges

- Data access: often perceived as high risk due to difficulty of de-identification.
- Copy-paste: existing workflows encourage the repetition of existing text.
- Quality variance: some text well-written for communication, some not.
- Partial structure: sometimes generated or copied from structure (e.g vitals).
- And the previous challenges with language...

Additional Considerations for Audio

• **Disfluency:** non-trivial difluencies in spoken language.

"I think you should <u>um</u> take <u>you know</u> aspirin."

• Utterance Segmentation: imperfect speech turns complicate context.

"I'd like you to take albuterol for a week, <u>also do you have an upcoming</u> <u>competition?</u> I would like you to avoid vigorous exercise.

Outline

- What is clinical language?
- Common natural language processing (NLP) tasks.
- Resources for working with clinical language.
- Selected applications.

NLP Tasks

- Part of Speech
- Parsing
- Named Entity Recognition
- Normalization
- Negation
- Uncertainty
- Word Sense Disambiguation
- Relation Classification
- Summarization
 - Extractive
 - Abstractive

NLP Tasks

- Part of Speech
- Parsing
- Named Entity Recognition
- Normalization
- Negation
- Uncertainty
- Word Sense Disambiguation
- Relation Classification
- Summarization
 - Extractive
 - Abstractive

Named Entity Recognition

- Identify mentions of semantic types within text:
 - Find spans that correspond to an entity.
 - Classify the correct semantic type from the span.

- Context is important to resolve ambiguity, e.g.:
 - Ms Jane Doe has a history of MS
 - Mr Hutchinson diagnosed with Hutchinson

Normalization / Entity Linking

• Given an entity mention, assign canonical identifier (e.g., from ontology)

- We want each of these to have the same meaning:
 - Patient diagnosed with RA (C0003873)
 - Patient diagnosed with *Rheumatoid Arthritis* (C0003873)
 - Patient diagnosed with atrophic arthritis (C0003873)

Negation & Uncertainty

- Negation: entity mention is negated.
 - Patient denies foot joint pain.
 - foot joint pain, negated C0458239, negated

- **Uncertainty:** entity mention not definitive.
 - Results suggestive of colorectal cancer.
 - colorectal cancer, probable
 C1527249, probably

Relations

- Relations: high level semantic types relating more than one mention, e.g.:
 - DegreeOf(modifier, disease/disorder)
 - LocationOf(anatomical site, sign/symptom)
 - Disrupts(anatomical site, disease/disorder)
 - Treats(drug, gene, mutation)
- Helpful in forming higher level conceptual understanding.

Example of a Pipeline

An example of a sentence discovered by the sentence boundary detector:

```
Fx of obesity but no fx of coronary artery diseases.
Tokenizer output – 11 tokens found:
  Fx of obesity but no fx of coronary artery diseases .
Normalizer output:
  Px of obesity but no fx of coronary artery disease
Part-of-speech tagger output:
  Px of obesity but no fx of coronary artery diseases
Shallow parser output:
  Fx of obesity but no fx of coronary artery diseases .
                                   NP ____
Named Entity Recognition - 5 Named Entities found:
  Fx of obesity but no fx of coronary artery diseases .
        obesity (type=diseases/disorders, UMLS CUI=C0028754, SNOMED-CT codes=308124008 and 5476005)
                             coronary artery diseases (type-diseases/disorders, CUI-C0010054, SNOMED-CT-8957000)
                             coronary artery (type=anatomy, CUI(s) and SNOMED-CT codes assigned)
                                     artery (type=anatomy, CUI(s) and SNOMED-CT codes assigned)
                                            diseases (type=diseases/disorders, CUI = C0010054)
Status and Negation attributes assigned to Named Entities:
  Fx of obesity but no fx of coronary artery diseases .
        obesity (status = family history of; negation = not negated)
                             coronary artery diseases (status = family history of, negation = is negated)
```

Figure 1 Example sentence processed through cTAKES components 'family history of obesity but no family history of coronary artery diseases.'

Fx. family history.

Savova et al. Mayo clinical Text Analysis and Knowledge Extraction System (cTAKES): architecture, component evaluation and applications. JAMIA 2010.

Outline

- What is clinical language?
- Common natural language processing (NLP) tasks.
- Resources for working with clinical language.
- Selected applications.

How can we represent language?

Medical Ontologies and Lexicons

- **SNOMED CT:** Codes, terms, synonyms, and definitions of clinical terms.
- RxNorm: Nomenclature of clinical drugs produced by NLM.
- MeSH: Medical Subject Headings (e.g., medical literature).
- LOINC: Logical Observation Identifiers Names and Codes (e.g. labs).
- **CPT:** <u>Current Procedural Terminology maintained by AMA (e.g. billing).</u>
- ICD: International Classification of Disease maintained by WHO (e.g. billing).

One System to Rule Them All

- SNOMED CT: Codes, terms, synonyms, and definitions of clinical terms.
- RxNorm: Nomenclature of clinical drugs produced by NLM
- **MeSH:** Medical Subject Headings (e.g., medical literature)
- LOINC: Logical Observation Identifiers Names and Codes (e.g. labs)
- **CPT:** <u>Current Procedural Terminology maintained by AMA (e.g. billing).</u>
- **ICD**: International Classification of Disease (e.g. billing)

...

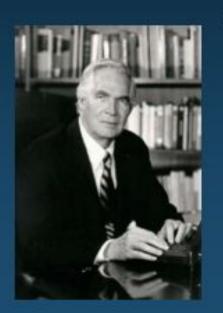
+ 200 more sources

Unified Medical Language System (UMLS)

History of the UMLS

[Lindberg & al., Methods, 1993] [Humphreys & al., JAMIA, 1998]

- Started at National Library of Medicine, 1986
- "Long-term R&D project"
- Complementary to IAIMS



(Integrated Academic Information Management Systems)

- «[...] the UMLS project is an effort to overcome two significant barriers to effective retrieval of machine-readable information.
- The first is the variety of ways the same concepts are expressed in different machine-readable sources and by different people.
- The second is the distribution of useful information among many disparate databases and systems.»

Credit: Rachel Kleinsorge, Jan Willis, "UMLS Basics class"

The UMLS consists of

Metathesaurus

1 million+ biomedical concepts from over 100 sources Semantic Network

135 broad categories and 54 relationships between categories SPECIALIST Lexicon & Tools

lexical information and programs for language processing

3 Knowledge Sources used separately or together

Credit: Rachel Kleinsorge, Jan Willis, "UMI S Basics class"

Metathesaurus: clusters terms by meaning

- Synonymous terms clustered into a concept
- Preferred term is chosen
- Unique identifier (CUI) is assigned

Addison's disease	Metathesaurus	PN	
Addison's disease	SNOMED CT	PT	363732003
Addison's Disease	MedlinePlus	PT	T1233
Addison Disease	MeSH	PT	D000224
Bronzed disease	SNOMED Intl 1998	SY	DB-70620
Deficiency; corticorenal,	ICPC2-ICD10	PT	MTHU021575
primary	Thesaurus		
Primary Adrenal Insufficiency	MeSH	EN	D000224
Primary hypoadreanlism	MedDRA	LT	10036696
syndrome, Addison			

C0001403

Addison's disease

Credit: Rachel Kleinsorge, Jan Willis, "UMLS Basics class"

Semantic Network

- 135 Semantic Types
 - Broad subject categories (Clinical Drug, Virus)
 - Ex:
 - Addison's Disease
 - Semantic Type: Disease or Syndrome
- 54 Semantic Relationships
 - Links between categories (isa, causes, treats)
 - Ex:
 - Virus causes Disease or Syndrome
- Types + Relationships
 - Form the structure of the semantic network
 - Broadly categorize the biomedical domain

Concept cluster of synonymous terms

Concept C0001621

Term adrenal disease gland L0001621

Term adrenal disorder gland unspecified L0041793

Term adrenal disorder L0161347

Term adrenal disorder gland L0181041

Term L0162317 S0011232 Adrenal Gland Diseases S0011231 Adrenal Gland Disease S0000441 Disease of adrenal gland S0481705 Disease of adrenal gland, NOS S0220090 Disease, adrenal gland S0044801 Gland Disease, Adrenal

S0860744 Disorder of adrenal gland, unspecified S0217833 Unspecified disorder of adrenal glands

S0225481 ADRENAL DISORDER
S0627685 DISORDER ADRENAL (NOS)

S0632950 Disorder of adrenal gland S0354509 Adrenal Gland Disorders

S0226798 SURRENALE, MALADIES

FRE

Credit: Rachel Kleinsorge, Jan Willis, 'UMLS Basics class"

Is there data available?

i2b2: Informatics for Integrating Biology at the Bedside

- 2006 Deidentification and Smoking Challenge
- 2008 Obesity Challenge
- 2009 Medication Challenge
- 2010 Relations Challenge
- 2011 Coreference Challenge
- 2012 Temporal Relations Challenge
- 2014 De-identification and Heart Disease Risk Factors Challenge
- Challenge format: Datasets are annotated!¹

SemEval & ShARe/CLEF

- 2014 SemEval Task 7: Analysis of Clinical Text¹
 - Entity, acronym, abbreviation recognition, mapping to CUIs
- 2015 SemEval Task 14: Analysis of Clinical Text²
 - Entity, acronym, abbreviation recognition, mapping to CUIs
- 2015 SemEval Task 6: Clinical TempEval³
 - Timespan, event, and temporal relation
- 2015: CLEF eHealth Evaluation Lab Task 1a: Clinical Speech Recognition⁴
 - Minimize word detection errors for Australian nursing shift changes

² http://alt.gcri.org/semeval2015/task14

^{3]} http://alt.gcri.org/semeval2015/task6/

^[4] https://sites.google.com/site/clefehealth2015/task-1/task-1a

Health NLP (hNLP) Center

MIMIC-III

- Over 2M notes for ~50K patients.
- Notes are de-identified, but otherwise unannotated.

Are tools available?

NLP Tools

- cTAKES¹ (clinical Text Analysis and Knowledge Extraction System)
 - Commonly regarded as the standard.
 - Flexible, but may require significant configuration.
- MetaMap²
 - Designed to identify UMLS concepts in text using knowledge-intensive approach.
- MetaMap Lite³
 - Less rigorous than MetaMap, but <u>much</u> faster.
- Sophia⁴ (v3NLP Framework)
 - Transform text into structured data for quality improvement, research, population health surveillance, and decision support. Scalable out of the box

^[1] http://ctakes.apache.org/

²¹ https://metamap.nlm.nih.gov

^[3] https://metamap.nlm.nih.gov/MetaMapLite.shtml

^[4] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5019303/

NLP Tools

- CLAMP¹ (Clinical Language Annotation, Modeling and Processing Toolkit)
- MedEx²
- MedLEE (Medical Language Extraction and Encoding System)
- CliNER⁴ (Clinical Named Entity Recognition System)
- ...

^[1] https://clamp.uth.edu

^[2] http://www.vumc.org/cpm/cpm-blog/medex-tool-finding-medication-information

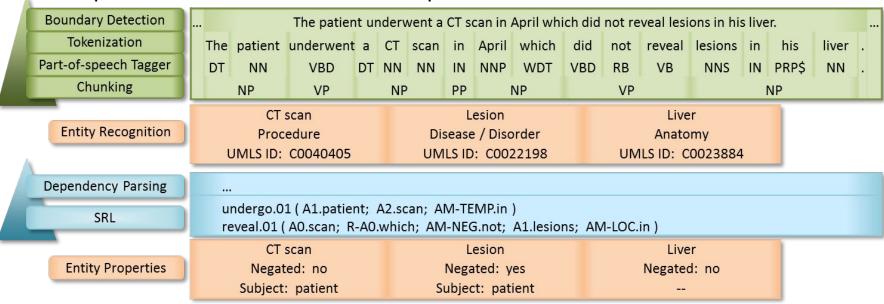
^{3]} http://www.medlingmap.org/taxonomy/term/80

^[4] https://github.com/text-machine-lab/CliNER

cTAKES

Default pipeline is a good starting point for many projects.

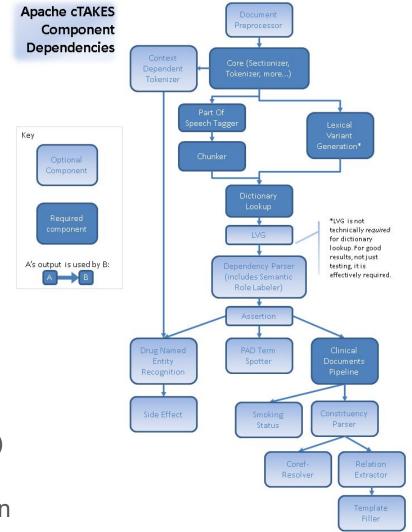
The patient underwent a CT scan in April which did not reveal lesions in his liver.



[1] https://cwiki.apache.org/confluence/display/CTAKES/Default+Clinical+Pipeline

cTAKES Components

- Sentence boundary
- Tokenization (rule-based)
- Morphologic normalization (NLM'S LVG)
- POS tagging
- Shallow parsing
- Named Entity Recognition
 - Dictionary mapping (lookup algorithm)
 - Machine learning
 - Types: Diseases/Disorders, Signs/Symptoms,
 Anatomical Sites, Procedures, Medications
- Negation and context identification (NegEx)
- Relation Extraction
- Clinical Element Model (CEM) normalization



Outline

- What is clinical language?
- Common natural language processing (NLP) tasks.
- Tools for working with clinical language.
- Selected applications.

Automated Trigger for Sepsis

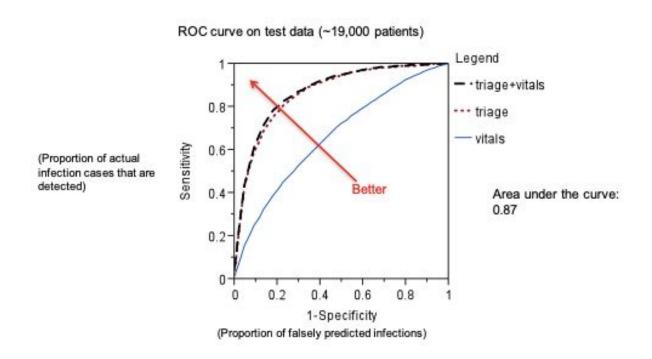
Automated Trigger for Sepsis

Horng et al.¹ use vitals and triage nursing notes to predict sepsis.

Which of these is likely to develop sepsis?

- pt with fever, chills, N/V since friday after eating what hethought was undercooked meat. Unable to hold po's down. Fevers to 103
- 89 yo f s/p esophageal hernia repair 3/09 w/?g-tube placement now w/ c/o's n&v. family reports pt's appetite is decreased, no BM x3d. generally not feeling well, had a bad day.
- from the scene fall of horse landed on r thigh deformity iv fluid 100 fentanyl/ morhpine 4. no head or neck pain/

Text is much more predictive than structured data

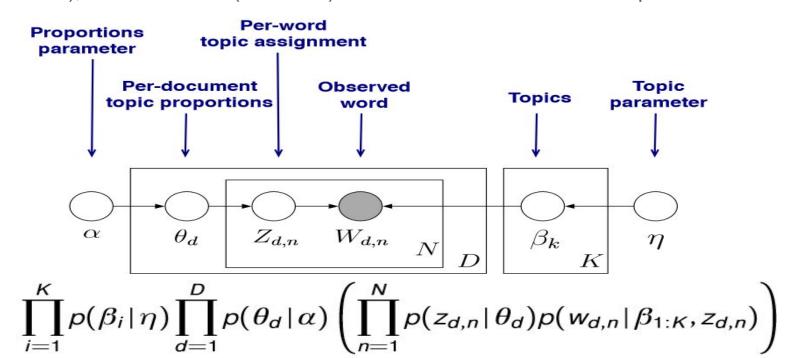


Learning a representation for reasoning about a patient

- Observation: The goal of the triage note is to summarize a patient's state to provide maximal *context* in which to understand future data.
- Question: Can we learn the latent space directly from the triage text?
- Solution: Use a topic model called latent Dirichlet allocation (LDA) to identify underlying latent space.

Latent Dirichlet Allocation (LDA)

• Generative model where each document is a mixture of a small number of topics (inferred), and each word (observed) is attributable to one of those topics.



Underlying Topics Make Sense

Their topic distributions appeal to clinical intution.

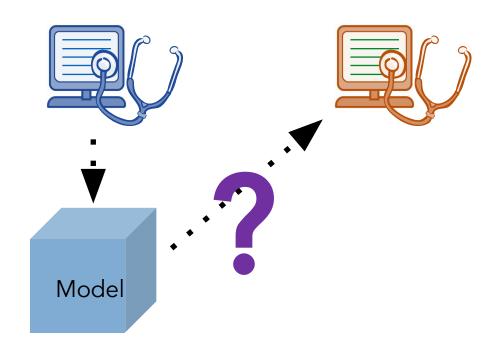
Summary: Notes Contain Important Observations of Uninstrumented Information

Topic representations capture important information from clinical notes.

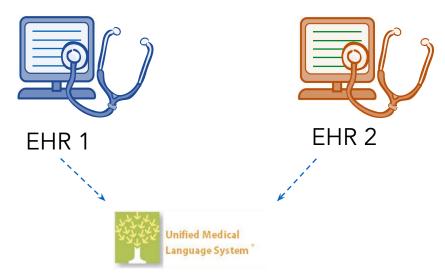
Topic representations add predictive value over existing structured vitals.

Transfer Predictive Models Across EHRs

Transfer Predictive Models Across EHRs

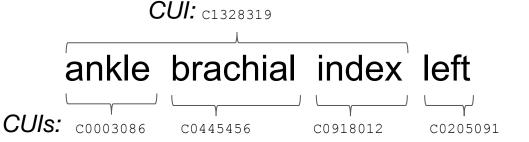


Solution: Map Semantically Similar Items to Shared Vocabulary



Identify semantically equivalent concepts

Clinical Concepts Underlie Human-Readable Metadata



All: {C1328319, C0003086, C0445456, C0918012, C0205091}

Spanning: {C1328319, C0205091}

Longest: {C1328319}

```
CUI: c1328319

ankle brachial index left

CUIs: c0003086 c0445456 c0918012 c0205091

...
```

All:

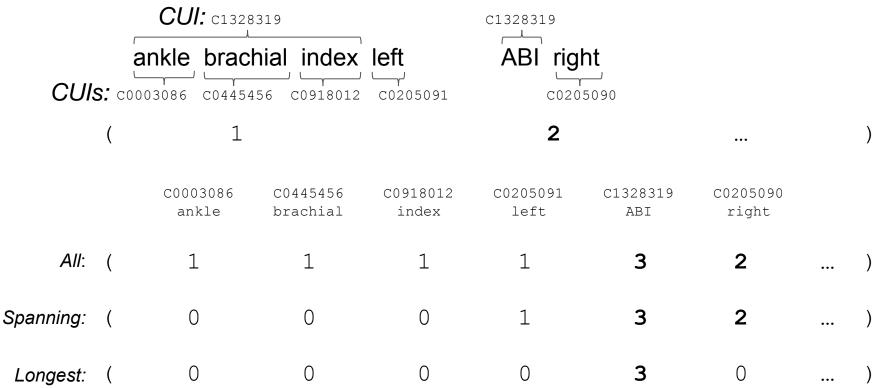
Spanning : (0 0 0 1 1	Spanning: ((0	0	0	1		•••
-------------------------------	-------------	-----	---	---	---	--	-----

CUI: c1328319

ankle brachial index left

CUIs: c0003086 c0445456 c0918012 c0205091

		C0003086 ankle	C0445456 brachial	C0918012 index	C0205091 left	C1328319 ABI		
All:	(1	1	1	1	1)
Spanning:	(0	0	0	1	1)
Longest:	(0	0	0	0	1)

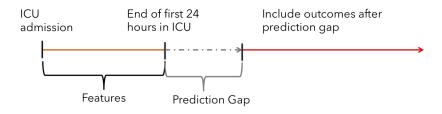


Data & Experimental Setup

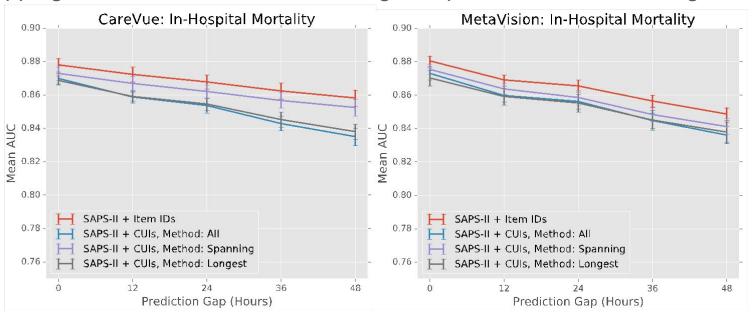
- Data and Representation
 - Data from 2 MIMIC EHR systems (CareVue and MetaVision).
 - Item IDs encode charted observations as bag-of-events.
 - Shared Item IDs from hospital EHR, and ICU-specific ItemIDs.
 - o Item IDs mapped to UMLS CUIs.

Model

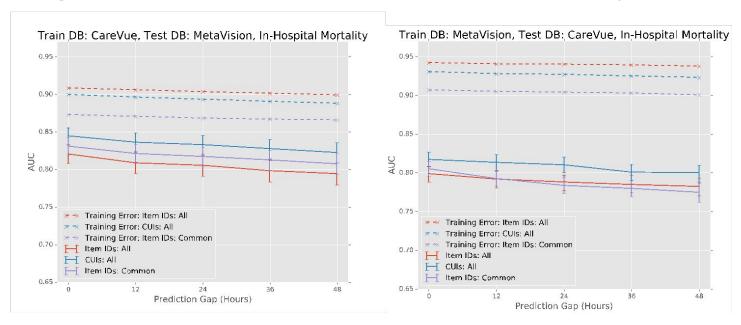
 L2-regularized Logistic Regression, 5-fold cross-validation on training sets to determine best hyperparameters



Experiment 1: Does Mapping Item ID Bag-of-Events To CUI Bag-of-Events Perform Well Within Each EHR? Mapping Item IDs to CUIs does not degrade performance within single EHR.



Experiment 2: Does Mapping Item ID Bag-of-Events To CUI Bag-of-Events Perform Better Across EHRs? Mapping Item IDs to CUIs improves performance consistently across EHRs.



Summary: Text Enables Generalizability

 Application proposed an approach to automatically map semantically similar concepts from different databases to a common vocabulary.

 Application demonstrated the utility of this approach across an EHR transition on a set of prediction tasks.

Establishing the Availability of

Information

Establishing the Availability of Information

Complex models perform well in many domains, but results may be shallow.

 Are we leveraging the information that we should in unstructured text to predict outcomes?

Predicting Clinical Outcomes

Target the prediction of common clinical outcomes in the ICU.

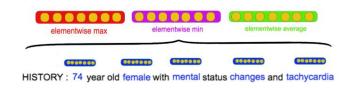
Task		Classes			
In-Hospital Mortality	Survived: 20,062	Expired: 924			
Diagnosis	Sepsis: 350	IC Hemorrhage: 295	Pneumonia: 483	CAD: 523	GI Bleed: 300
Admission Type	Urgent: 17,390	Elective: 3,596			
Length of Stay	Short (< 1.5 days): 6,722	Medium (1-5-3.5 days): 8,126	Long (> 3.5 days): 6,138		

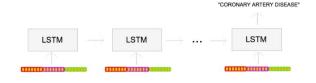
Predicting Intermediate Information

• Establish the availability of important intermediate information to different classes of models.

Task		Classes		
Age	< 50 years: 4,565	50 - 80 years: 12,272	80+ years: 4,149	
Gender	Male: 11,982	Female: 9,004		
Ethnicity	White: 14,974	Non-white: 3,282		

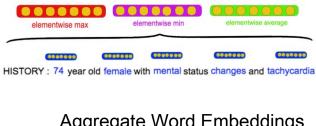
- Form representations using:
 - Bag-of-words
 - Aggregate Word Embeddings
 - LSTM

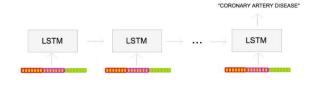




LSTM

- Form representations using:
 - Bag-of-words
 - Aggregate Word Embeddings
 - LSTM

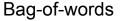


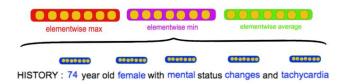


Aggregate Word Embeddings

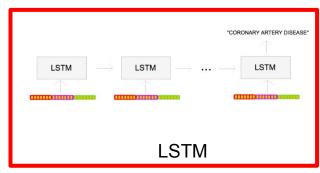
LSTM

- Form representations using:
 - Bag-of-words
 - Aggregate Word Embeddings
 - LSTM



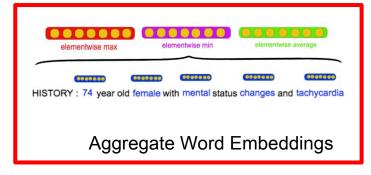


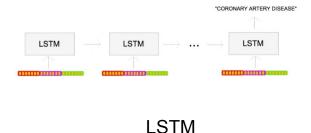
Aggregate Word Embeddings



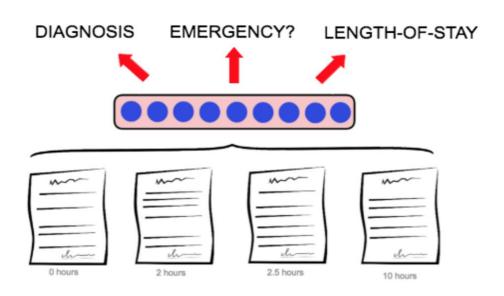
- Form representations using:
 - Bag-of-words
 - Aggregate Word Embeddings
 - o LSTM

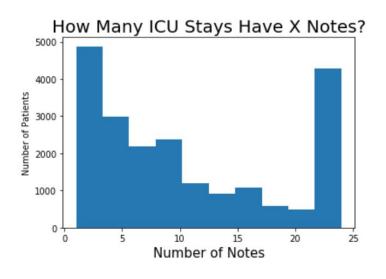
Bag-of-words





Experimental Setup





patient is a 64 y/o man [

patient is a AGE_BETWEEN_SIXTY_AND_SEVENTY man

Simple models do surprisingly well on many tasks.

Binary AUCs

Task	In-Hospital Mortality	Admission Type	Gender	Ethnicity
BoW	.821	.883	.914	.619
Embeddings	.814	.873	.836	.580
LSTM	.777	.870	.837	.533

Simple models do surprisingly well on many tasks.

Binary AUCs

Task	In-Hospital Mortality	Admission Type	Gender	Ethnicity
BoW	.821	.883	.914	.619
Embeddings	.814	.873	.836	.580
LSTM	.777	.870	.837	.533

Simple models do surprisingly well on many tasks.

Binary AUCs

Task	In-Hospital Mortality	Admission Type	Gender	Ethnicity
BoW	.821	.883	.914	.619
Embeddings	.814	.873	.836	.580
LSTM	.777	.870	.837	.533

Simple models do surprisingly well on many tasks.

Binary AUCs

Task	In-Hospital Mortality	Admission Type	Gender	Ethnicity
BoW	.821	.883	.914	.619
Embeddings	.814	.873	.836	.580
LSTM	.777	.870	.837	.533

Multiclass Macro F1s

Task	Diagnosis	Length of Stay	Age
BoW	.828	.724	.635
Embeddings	.828	.730	.544
LSTM	.836	.758	.450

Simple models do surprisingly well on many tasks.

Binary AUCs

Task	In-Hospital Mortality	Admission Type	Gender	Ethnicity
BoW	.821	.883	.914	.619
Embeddings	.814	.873	.836	.580
LSTM	.777	.870	.837	.533

Multiclass Macro F1s

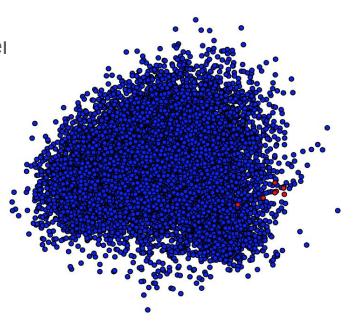
Task	Diagnosis	Length of Stay	Age
BoW	.828	.724	.635
Embeddings	.828	.730	.544
LSTM	.836	.758	.450

Word Vector Embeddings for Age Cluster Together, Confusing Prediction

 The age embedding is averaged across other signals from other embeddings.

 Obscures information that clinicians expect our models to know for relevance.

Task	Age
BoW	.635
Embeddings	.544
LSTM	.450



Summary: A Single Representation is Not Sufficient

• Simple representations have surprisingly good predictive power.

Complex representations do not always capture basic information.

Words that appear in similar contexts may still have different meanings.

Clinical Natural Language Processing and Audio

Tristan Naumann, Microsoft Research

tristan@microsoft.com